3.157 \(\int \frac{a+b \text{sech}^{-1}(c x)}{x^2 \sqrt{d+e x^2}} \, dx\)

Optimal. Leaf size=221 \[ -\frac{b \sqrt{\frac{1}{c x+1}} \sqrt{c x+1} \left (c^2 d+e\right ) \sqrt{\frac{e x^2}{d}+1} \text{EllipticF}\left (\sin ^{-1}(c x),-\frac{e}{c^2 d}\right )}{c d \sqrt{d+e x^2}}-\frac{\sqrt{d+e x^2} \left (a+b \text{sech}^{-1}(c x)\right )}{d x}+\frac{b \sqrt{\frac{1}{c x+1}} \sqrt{c x+1} \sqrt{1-c^2 x^2} \sqrt{d+e x^2}}{d x}+\frac{b c \sqrt{\frac{1}{c x+1}} \sqrt{c x+1} \sqrt{d+e x^2} E\left (\sin ^{-1}(c x)|-\frac{e}{c^2 d}\right )}{d \sqrt{\frac{e x^2}{d}+1}} \]

[Out]

(b*Sqrt[(1 + c*x)^(-1)]*Sqrt[1 + c*x]*Sqrt[1 - c^2*x^2]*Sqrt[d + e*x^2])/(d*x) - (Sqrt[d + e*x^2]*(a + b*ArcSe
ch[c*x]))/(d*x) + (b*c*Sqrt[(1 + c*x)^(-1)]*Sqrt[1 + c*x]*Sqrt[d + e*x^2]*EllipticE[ArcSin[c*x], -(e/(c^2*d))]
)/(d*Sqrt[1 + (e*x^2)/d]) - (b*(c^2*d + e)*Sqrt[(1 + c*x)^(-1)]*Sqrt[1 + c*x]*Sqrt[1 + (e*x^2)/d]*EllipticF[Ar
cSin[c*x], -(e/(c^2*d))])/(c*d*Sqrt[d + e*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.257538, antiderivative size = 221, normalized size of antiderivative = 1., number of steps used = 9, number of rules used = 10, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.435, Rules used = {264, 6301, 12, 475, 21, 423, 426, 424, 421, 419} \[ -\frac{\sqrt{d+e x^2} \left (a+b \text{sech}^{-1}(c x)\right )}{d x}+\frac{b \sqrt{\frac{1}{c x+1}} \sqrt{c x+1} \sqrt{1-c^2 x^2} \sqrt{d+e x^2}}{d x}-\frac{b \sqrt{\frac{1}{c x+1}} \sqrt{c x+1} \left (c^2 d+e\right ) \sqrt{\frac{e x^2}{d}+1} F\left (\sin ^{-1}(c x)|-\frac{e}{c^2 d}\right )}{c d \sqrt{d+e x^2}}+\frac{b c \sqrt{\frac{1}{c x+1}} \sqrt{c x+1} \sqrt{d+e x^2} E\left (\sin ^{-1}(c x)|-\frac{e}{c^2 d}\right )}{d \sqrt{\frac{e x^2}{d}+1}} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*ArcSech[c*x])/(x^2*Sqrt[d + e*x^2]),x]

[Out]

(b*Sqrt[(1 + c*x)^(-1)]*Sqrt[1 + c*x]*Sqrt[1 - c^2*x^2]*Sqrt[d + e*x^2])/(d*x) - (Sqrt[d + e*x^2]*(a + b*ArcSe
ch[c*x]))/(d*x) + (b*c*Sqrt[(1 + c*x)^(-1)]*Sqrt[1 + c*x]*Sqrt[d + e*x^2]*EllipticE[ArcSin[c*x], -(e/(c^2*d))]
)/(d*Sqrt[1 + (e*x^2)/d]) - (b*(c^2*d + e)*Sqrt[(1 + c*x)^(-1)]*Sqrt[1 + c*x]*Sqrt[1 + (e*x^2)/d]*EllipticF[Ar
cSin[c*x], -(e/(c^2*d))])/(c*d*Sqrt[d + e*x^2])

Rule 264

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a + b*x^n)^(p + 1))/(a
*c*(m + 1)), x] /; FreeQ[{a, b, c, m, n, p}, x] && EqQ[(m + 1)/n + p + 1, 0] && NeQ[m, -1]

Rule 6301

Int[((a_.) + ArcSech[(c_.)*(x_)]*(b_.))*((f_.)*(x_))^(m_.)*((d_.) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> With[{u
= IntHide[(f*x)^m*(d + e*x^2)^p, x]}, Dist[a + b*ArcSech[c*x], u, x] + Dist[b*Sqrt[1 + c*x]*Sqrt[1/(1 + c*x)],
 Int[SimplifyIntegrand[u/(x*Sqrt[1 - c*x]*Sqrt[1 + c*x]), x], x], x]] /; FreeQ[{a, b, c, d, e, f, m, p}, x] &&
 ((IGtQ[p, 0] &&  !(ILtQ[(m - 1)/2, 0] && GtQ[m + 2*p + 3, 0])) || (IGtQ[(m + 1)/2, 0] &&  !(ILtQ[p, 0] && GtQ
[m + 2*p + 3, 0])) || (ILtQ[(m + 2*p + 1)/2, 0] &&  !ILtQ[(m - 1)/2, 0]))

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 475

Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[((e*x)^(m
 + 1)*(a + b*x^n)^(p + 1)*(c + d*x^n)^q)/(a*e*(m + 1)), x] - Dist[1/(a*e^n*(m + 1)), Int[(e*x)^(m + n)*(a + b*
x^n)^p*(c + d*x^n)^(q - 1)*Simp[c*b*(m + 1) + n*(b*c*(p + 1) + a*d*q) + d*(b*(m + 1) + b*n*(p + q + 1))*x^n, x
], x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LtQ[0, q, 1] && LtQ[m, -1] &&
IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 423

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Dist[b/d, Int[Sqrt[c + d*x^2]/Sqrt[a + b
*x^2], x], x] - Dist[(b*c - a*d)/d, Int[1/(Sqrt[a + b*x^2]*Sqrt[c + d*x^2]), x], x] /; FreeQ[{a, b, c, d}, x]
&& PosQ[d/c] && NegQ[b/a]

Rule 426

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Dist[Sqrt[a + b*x^2]/Sqrt[1 + (b*x^2)/a]
, Int[Sqrt[1 + (b*x^2)/a]/Sqrt[c + d*x^2], x], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &&  !GtQ
[a, 0]

Rule 424

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]*EllipticE[ArcSin[Rt[-(d/c)
, 2]*x], (b*c)/(a*d)])/(Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[
a, 0]

Rule 421

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Dist[Sqrt[1 + (d*x^2)/c]/Sqrt[c + d*
x^2], Int[1/(Sqrt[a + b*x^2]*Sqrt[1 + (d*x^2)/c]), x], x] /; FreeQ[{a, b, c, d}, x] &&  !GtQ[c, 0]

Rule 419

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1*EllipticF[ArcSin[Rt[-(d/c),
2]*x], (b*c)/(a*d)])/(Sqrt[a]*Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &
& GtQ[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-(b/a), -(d/c)])

Rubi steps

\begin{align*} \int \frac{a+b \text{sech}^{-1}(c x)}{x^2 \sqrt{d+e x^2}} \, dx &=-\frac{\sqrt{d+e x^2} \left (a+b \text{sech}^{-1}(c x)\right )}{d x}-\left (b \sqrt{\frac{1}{1+c x}} \sqrt{1+c x}\right ) \int \frac{\sqrt{d+e x^2}}{d x^2 \sqrt{1-c^2 x^2}} \, dx\\ &=-\frac{\sqrt{d+e x^2} \left (a+b \text{sech}^{-1}(c x)\right )}{d x}-\frac{\left (b \sqrt{\frac{1}{1+c x}} \sqrt{1+c x}\right ) \int \frac{\sqrt{d+e x^2}}{x^2 \sqrt{1-c^2 x^2}} \, dx}{d}\\ &=\frac{b \sqrt{\frac{1}{1+c x}} \sqrt{1+c x} \sqrt{1-c^2 x^2} \sqrt{d+e x^2}}{d x}-\frac{\sqrt{d+e x^2} \left (a+b \text{sech}^{-1}(c x)\right )}{d x}-\frac{\left (b \sqrt{\frac{1}{1+c x}} \sqrt{1+c x}\right ) \int \frac{e-c^2 e x^2}{\sqrt{1-c^2 x^2} \sqrt{d+e x^2}} \, dx}{d}\\ &=\frac{b \sqrt{\frac{1}{1+c x}} \sqrt{1+c x} \sqrt{1-c^2 x^2} \sqrt{d+e x^2}}{d x}-\frac{\sqrt{d+e x^2} \left (a+b \text{sech}^{-1}(c x)\right )}{d x}-\frac{\left (b e \sqrt{\frac{1}{1+c x}} \sqrt{1+c x}\right ) \int \frac{\sqrt{1-c^2 x^2}}{\sqrt{d+e x^2}} \, dx}{d}\\ &=\frac{b \sqrt{\frac{1}{1+c x}} \sqrt{1+c x} \sqrt{1-c^2 x^2} \sqrt{d+e x^2}}{d x}-\frac{\sqrt{d+e x^2} \left (a+b \text{sech}^{-1}(c x)\right )}{d x}+\frac{\left (b c^2 \sqrt{\frac{1}{1+c x}} \sqrt{1+c x}\right ) \int \frac{\sqrt{d+e x^2}}{\sqrt{1-c^2 x^2}} \, dx}{d}-\frac{\left (b \left (c^2 d+e\right ) \sqrt{\frac{1}{1+c x}} \sqrt{1+c x}\right ) \int \frac{1}{\sqrt{1-c^2 x^2} \sqrt{d+e x^2}} \, dx}{d}\\ &=\frac{b \sqrt{\frac{1}{1+c x}} \sqrt{1+c x} \sqrt{1-c^2 x^2} \sqrt{d+e x^2}}{d x}-\frac{\sqrt{d+e x^2} \left (a+b \text{sech}^{-1}(c x)\right )}{d x}+\frac{\left (b c^2 \sqrt{\frac{1}{1+c x}} \sqrt{1+c x} \sqrt{d+e x^2}\right ) \int \frac{\sqrt{1+\frac{e x^2}{d}}}{\sqrt{1-c^2 x^2}} \, dx}{d \sqrt{1+\frac{e x^2}{d}}}-\frac{\left (b \left (c^2 d+e\right ) \sqrt{\frac{1}{1+c x}} \sqrt{1+c x} \sqrt{1+\frac{e x^2}{d}}\right ) \int \frac{1}{\sqrt{1-c^2 x^2} \sqrt{1+\frac{e x^2}{d}}} \, dx}{d \sqrt{d+e x^2}}\\ &=\frac{b \sqrt{\frac{1}{1+c x}} \sqrt{1+c x} \sqrt{1-c^2 x^2} \sqrt{d+e x^2}}{d x}-\frac{\sqrt{d+e x^2} \left (a+b \text{sech}^{-1}(c x)\right )}{d x}+\frac{b c \sqrt{\frac{1}{1+c x}} \sqrt{1+c x} \sqrt{d+e x^2} E\left (\sin ^{-1}(c x)|-\frac{e}{c^2 d}\right )}{d \sqrt{1+\frac{e x^2}{d}}}-\frac{b \left (c^2 d+e\right ) \sqrt{\frac{1}{1+c x}} \sqrt{1+c x} \sqrt{1+\frac{e x^2}{d}} F\left (\sin ^{-1}(c x)|-\frac{e}{c^2 d}\right )}{c d \sqrt{d+e x^2}}\\ \end{align*}

Mathematica [C]  time = 4.00984, size = 501, normalized size = 2.27 \[ -\frac{\frac{b \sqrt{\frac{1-c x}{c x+1}} \left (\sqrt{e} x+i \sqrt{d}\right ) \sqrt{\frac{c \left (\sqrt{d}+i \sqrt{e} x\right )}{(c x+1) \left (c \sqrt{d}+i \sqrt{e}\right )}} \left (2 i \sqrt{e} \text{EllipticF}\left (i \sinh ^{-1}\left (\sqrt{\frac{(1-c x) \left (c^2 d+e\right )}{(c x+1) \left (c \sqrt{d}+i \sqrt{e}\right )^2}}\right ),\frac{\left (c \sqrt{d}+i \sqrt{e}\right )^2}{\left (c \sqrt{d}-i \sqrt{e}\right )^2}\right )+\left (c \sqrt{d}-i \sqrt{e}\right ) E\left (i \sinh ^{-1}\left (\sqrt{\frac{\left (d c^2+e\right ) (1-c x)}{\left (\sqrt{d} c+i \sqrt{e}\right )^2 (c x+1)}}\right )|\frac{\left (\sqrt{d} c+i \sqrt{e}\right )^2}{\left (c \sqrt{d}-i \sqrt{e}\right )^2}\right )\right )}{\sqrt{-\frac{(c x-1) \left (c \sqrt{d}-i \sqrt{e}\right )}{(c x+1) \left (c \sqrt{d}+i \sqrt{e}\right )}} \sqrt{\frac{c \left (\sqrt{d}-i \sqrt{e} x\right )}{(c x+1) \left (c \sqrt{d}-i \sqrt{e}\right )}}}+a \left (\frac{d}{x}+e x\right )-\frac{b \sqrt{\frac{1-c x}{c x+1}} (c x+1) \left (d+e x^2\right )}{x}+b c \sqrt{\frac{1-c x}{c x+1}} \left (d+e x^2\right )+\frac{b \text{sech}^{-1}(c x) \left (d+e x^2\right )}{x}}{d \sqrt{d+e x^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*ArcSech[c*x])/(x^2*Sqrt[d + e*x^2]),x]

[Out]

-((a*(d/x + e*x) + b*c*Sqrt[(1 - c*x)/(1 + c*x)]*(d + e*x^2) - (b*Sqrt[(1 - c*x)/(1 + c*x)]*(1 + c*x)*(d + e*x
^2))/x + (b*(d + e*x^2)*ArcSech[c*x])/x + (b*Sqrt[(1 - c*x)/(1 + c*x)]*Sqrt[(c*(Sqrt[d] + I*Sqrt[e]*x))/((c*Sq
rt[d] + I*Sqrt[e])*(1 + c*x))]*(I*Sqrt[d] + Sqrt[e]*x)*((c*Sqrt[d] - I*Sqrt[e])*EllipticE[I*ArcSinh[Sqrt[((c^2
*d + e)*(1 - c*x))/((c*Sqrt[d] + I*Sqrt[e])^2*(1 + c*x))]], (c*Sqrt[d] + I*Sqrt[e])^2/(c*Sqrt[d] - I*Sqrt[e])^
2] + (2*I)*Sqrt[e]*EllipticF[I*ArcSinh[Sqrt[((c^2*d + e)*(1 - c*x))/((c*Sqrt[d] + I*Sqrt[e])^2*(1 + c*x))]], (
c*Sqrt[d] + I*Sqrt[e])^2/(c*Sqrt[d] - I*Sqrt[e])^2]))/(Sqrt[-(((c*Sqrt[d] - I*Sqrt[e])*(-1 + c*x))/((c*Sqrt[d]
 + I*Sqrt[e])*(1 + c*x)))]*Sqrt[(c*(Sqrt[d] - I*Sqrt[e]*x))/((c*Sqrt[d] - I*Sqrt[e])*(1 + c*x))]))/(d*Sqrt[d +
 e*x^2]))

________________________________________________________________________________________

Maple [F]  time = 1.015, size = 0, normalized size = 0. \begin{align*} \int{\frac{a+b{\rm arcsech} \left (cx\right )}{{x}^{2}}{\frac{1}{\sqrt{e{x}^{2}+d}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*arcsech(c*x))/x^2/(e*x^2+d)^(1/2),x)

[Out]

int((a+b*arcsech(c*x))/x^2/(e*x^2+d)^(1/2),x)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsech(c*x))/x^2/(e*x^2+d)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{e x^{2} + d}{\left (b \operatorname{arsech}\left (c x\right ) + a\right )}}{e x^{4} + d x^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsech(c*x))/x^2/(e*x^2+d)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(e*x^2 + d)*(b*arcsech(c*x) + a)/(e*x^4 + d*x^2), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{a + b \operatorname{asech}{\left (c x \right )}}{x^{2} \sqrt{d + e x^{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*asech(c*x))/x**2/(e*x**2+d)**(1/2),x)

[Out]

Integral((a + b*asech(c*x))/(x**2*sqrt(d + e*x**2)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{b \operatorname{arsech}\left (c x\right ) + a}{\sqrt{e x^{2} + d} x^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsech(c*x))/x^2/(e*x^2+d)^(1/2),x, algorithm="giac")

[Out]

integrate((b*arcsech(c*x) + a)/(sqrt(e*x^2 + d)*x^2), x)